“Superfast, high-resolution absolute 3D recovery of a stabilized flapping flight process,” Opt. Express, (2017)

B. Li and S. Zhang, “Superfast, high-resolution absolute 3D recovery of a stabilized flapping flight process,” Opt. Express, 25(22), 27270-27282 (2017); doi:10.1364/OE.25.027270

Abstract

Scientific research of a stabilized flapping flight process (e.g. hovering) has been of great interest to a variety of fields including biology, aerodynamics and bio-inspired robotics. Different from the current passive photogrammetry based methods, the digital fringe projection (DFP) technique has the capability of performing dense superfast (e.g. kHz) 3D topological reconstruction with the projection of defocused binary patterns, yet it is still a challenge to measure a flapping flight process with the presence of rapid flapping wings. This paper presents a novel absolute 3D reconstruction method for a stabilized flapping flight process. Essentially, the slow motion parts (e.g. body) and the fast-motion parts (e.g. wings) are segmented and separately reconstructed with phase shifting techniques and Fourier transform, respectively. The topological relations between the wings and the body are utilized to ensure absolute 3D reconstruction. Experiments demonstrate the success of our computational framework by testing a flapping wing robot at different flapping speeds.