H. Sheng, J. Xu, and S. Zhang, "Dynamic projection theory for fringe projection profilometry," Appl. Opt., (2017) (Accepted)

[102] H. Sheng, J. Xu, and S. Zhang, "Dynamic projection theory for fringe projection profilometry," Appl. Opt., (2017) (Accepted)

 Fringe projection profilometry (FPP)  has been widely used for 3D reconstruction, surface measurement and reverse engineering. However, fringe projection profilometry is prone to overexposure if objects have a wide range of reflectance. In this paper, we propose a dynamic projection theory based on fringe projection profilometry to rapidly measure the overexposed region with an attempt to conquer this challenge. This theory modifies the projected fringe image to the next better measurement based on the feedback provided by the previously captured image intensity. Experiments demonstrated that the number of overexposed points can be drastically reduced after one or two iterations. Compared with the state-of-the-art methods, our proposed dynamic projection theory measures the overexposed region quickly and effectively, and thus broadens the applications of fringe projection profilometry.

“Absolute phase unwrapping for dual-camera system without embedding statistical features,” Opt. Eng., (2017)

C. Jiang and S. Zhang, “Absolute phase unwrapping for dual-camera system without embedding statistical features,,” Opt. Eng., (2017) (Accepted)

This paper proposes an absolute phase unwrapping method for 3D measurement that uses two cameras and one projector. On the left camera image, each pixel has one wrapped phase value which corresponds to multiple projector candidates with different absolute phase values. We use geometric relationship of the system to map projector candidates into right camera candidates. By applying a series of candidate rejection criteria, a unique correspondence pair between two camera images can be determined. Then the absolute phase is obtained by tracing the correspondence point back to projector space. Experimental results demonstrate that the proposed absolute phase unwrapping algorithm can successfully work on both complex geometry and multiple isolated objects measurement.

"Computer-aided-design (CAD) model assisted absolute three-dimensional shape measurement" Appl. Opt. (2017)

[100] B. Li, T. Bell, and S. Zhang, "Computer-aided-design (CAD) model assisted absolute three-dimensional shape measurement,"  Appl. Opt. 56(24), 6770-6776 (2017); doi: 10.1364/AO.56.006770

Abstract

Conventional  three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such level of generality is inessential when having the pre-knowledge of object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object CAD model. The proposed algorithm includes the following major steps: 1) export the 3D point cloud data from the CAD model; 2) transform the CAD model into the camera perspective; 3) obtain wrapped phase map from three phase-shifted fringe images; 4) retrieve absolute phase and 3D geometry assisted by CAD model. We demonstrate that if object CAD models are available, such algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.  

"High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method," Opt. Eng., (2017)

[99] J. -S. Hyun, B. Li, and S. Zhang, "High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method," Opt. Eng. 56(7), 074102 (2017).

Abstract

This paper presents our research findings on high-speed high-accuracy 3D shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

"Three-dimensional absolute shape measurement by combining binary statistical pattern matching with phase-shifting methods," Appl. Opt., (2017)

Y. An and S. Zhang, "Three-dimensional absolute shape measurement by combining binary statistical pattern matching with phase-shifting methods," Appl. Opt., (2017); (accepted)

This paper presents a novel method that leverages the stereo geometric relationship between projector and camera for absolute phase unwrapping on a standard one-projector and one-camera structured light system. Specifically, we use only one additional binary random image and the epipolar geometric constraint to generate a coarse correspondence map between projector and camera images. The coarse correspondence map is further refined by using the wrapped phase as a constraint. We then use the refined correspondence map to determine a fringe order for absolute phase unwrapping. Experimental results demonstrated the success of our proposed method.

"Absolute three-dimensional shape measurement with a known object," Optics Express (2017)

J. Dai and S. Zhang, "Absolute three-dimensional shape measurement with a known object," Opt. Express25(9), 10384-10396 (2017); doi: 10.1364/OE.25.010384

Abstract

This paper presents a novel method for absolute three-dimensional (3D) shape measurement that does not require conventional temporal phase unwrapping. Our proposed method uses a known object (i.e., a ping-pong ball) to provide cues for absolute phase unwrapping. During the measurement, the ping-pong ball is positioned to be close to the nearest point from the scene to the camera. We first segment ping-pong ball and spatially unwrap its phase, and then determine the integer multiple of $2\pi$ to be added such that the recovered shape matches its actual geometry. The nearest point of the ball provides $z_{min}$ to generate the minimum phase $\Phi_{min}$ that is then used to unwrap phase of the entire scene pixel by pixel. Experiments demonstrated that only three phase-shifted fringe patterns are required to measure absolute shapes of objects moving along depth $z$ direction.

"Optimal path planning and control of assembly robots for hard measuring easy-deformation assemblies", IEEE Trans. Mechatronics (accepted)

A. Wan, J. Xu, H. Chen, S. Zhang, and K. Chen, "Optimal path planning and control of assembly robots for hard measuring easy-deformation assemblies", IEEE Trans. Mechatronics, (2017); (accepted)

Abstract

Assembly robots are widely used in the electronics and automotive industries. However, assembly robots still face formidable challenges for assembling large-scale heavy-weight components such as the tail of the plane. First, the largescale component is difficult to measure; thus, the optimal assembly path is difficult to obtain. To this end, a learning from demonstration-based optimal path planning method is developed and implemented. Second, the deformation caused by a heavy-weight component will lead to a large motion error and could cause damage to the component. To solve this problem, a Gaussian process regression (GPR)-based deformation prediction and compensation method is presented to improve the robot motion accuracy. The simulation results show that the proposed GPR-based deformation compensation method can achieve high accuracy. An experimental prototype was developed to evaluate the proposed methods, and the results demonstrate the effectiveness of the proposed methods. Therefore, the proposed methods provide a path toward hard-measuring easy deformation assembly task.

 

"Pixel-by-pixel absolute three-dimensional shape measurement with modified Fourier transform profilometry" Appl. Opt., (2017)

[95] H. Yun, B. Li, and S. Zhang, "Pixel-by-pixel absolute three-dimensional shape measurement with modified Fourier transform profilometry", Appl. Opt., 56(5), 1472-1480, (2017); doi: 10.1364/AO.56.001472

Abstract

Single-pattern Fourier transform profilometry (FTP) method and double-pattern modified FTP method have great value on high-speed three-dimensional (3D) shape measurement, yet it is difficult to retrieve absolute phase pixel by pixel. This paper presents a method that can recover absolute phase pixel by pixel for the modified FTP method. The proposed method uses two images with different frequencies, and the recovered low frequency phase is used to temporally unwrap the high-frequency phase pixel by pixel. This paper also presents the computational framework to reduce noise impact for robust phase unwrapping. Experiments demonstrate the success of the proposed absolute phase recovery method using only two fringe patterns.

"Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers," Opt. Laser Eng., (2017)

C. Jiang,  B. Li, S. Zhang, "Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers," Opt. Laser Eng., 91, 232-241 (2017);  doi:10.1016/j.optlaseng.2016.12.002

This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed
three-dimensional (3D) absolute shape measurement technique includes the following major steps: 1) segment the measured object into different regions using rough priori knowledge of surface geometry; 2) artificially create phase maps at different z planes using geometric constraints of structured light system; 3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and 4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

"Development of a mobile tool mark characterization/comparison system," J. Forensic Sci., (2017)

L. S. Chumbley,  M. Morris, R. Spotts, and C. Macziewski, "Development of a mobile tool mark characterization/comparison system," J. Forensic Sci., 62(1), 83-91 (2017), doi: 10.1111/1556-4029.13233

Since the development of the striagraph, various attempts have been made to enhance forensic investigation through the use of measuring and imaging equipment. This study describes the development of a prototype system employing an easy-to-use software interface designed to provide forensic examiners with the ability to measure topography of a toolmarked surface and then conduct various comparisons using a statistical algorithm. Acquisition of the data is carried out using a portable 3D optical profilometer, and comparison of the resulting data files is made using software named “MANTIS” (Mark and Tool Inspection Suite). The system has been tested on laboratory-produced markings that include fully striated marks (e.g., screwdriver markings), quasistriated markings produced by shear-cut pliers, impression marks left by chisels, rifling marks on bullets, and cut marks produced by knives. Using the system, an examiner has the potential to (i) visually compare two toolmarked surfaces in a manner similar to a comparison microscope and (ii) use the quantitative information embedded within the acquired data to obtain an objective statistical comparison of the data files. This study shows that, based on the results from laboratory samples, the system has great potential for aiding examiners in conducting comparisons of toolmarks.

"Evaluation of pixel-wise geometric constraints based phase unwrapping method for low signal-to-noise-ratio (SNR) phase," Advanced Optical Technologies, (2016)

[91] Y. An, Z. Liu and S. Zhang, "Evaluation of pixel-wise geometric constraints based phase unwrapping method for low signal-to-noise-ratio (SNR) phase," Advanced Optical Technologies, 5(5-6), 423–432, (2016); doi: 10.1515/aot-2016-0048

This paper evaluates the robustness of our recently proposed geometric constraints based phase unwrapping method to unwrap low signal-to-noise ratio (SNR) phase.  Instead of capturing additional images for absolute phase unwrapping, the new phase unwrapping algorithm uses geometric constraints of the digital fringe projection (DFP) system to create a virtual reference phase map to unwrap the phase pixel by pixel. Both simulation and experimental results demonstrate that this new phase unwrapping method can even successfully unwrap low SNR phase maps that brings difficulties for conventional multi-frequency phase unwrapping methods.

"Superfast 3D absolute shape measurement using five binary patterns," Opt. Laser Eng., (2017)

[93] J. -S. Hyun and S. Zhang, "Superfast 3D absolute shape measurement using five binary patterns," Opt. Laser Eng., 90, 217-224, 2017; 10.1016/j.optlaseng.2016.10.017

Abstract

This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved.  For example, we developed a system that captures 2D images at 3,333Hz, and thus performs 3D shape measurement at 667 Hz.

"Method for large-range structured light system calibration," Appl. Opt., (2016)

[91] Y. An, T. Bell, B. Li, J. Xu and S. Zhang, "Method for large range structured light system calibration", Appl. Opt., 55(33), 9563-9572 (2016); doi:10.1364/AO.55.009563

Structured light system calibration often requires the usage of a calibration target with a similar size as the field of view (FOV), which brings challenges to large range structured light system calibration since fabricating large calibration targets is difficult and expensive. This paper presents a large range system calibration method that does not need a large calibration target. The proposed  method includes two stages: 1) accurately calibrate intrinsics  (i.e. focal lengths, and principle points) at a near range where both the camera and projector are out of focus; and 2) calibrate the extrinsic parameters (translation and rotation) from camera to projector with the assistance of a low-accuracy large range 3D sensor (e.g., Microsoft Kinect). We have developed a large-scale 3D shape measurement system with a FOV of (1120 × 1900 × 1000) mm^3. Experiments demonstrate our system can achieve measurement accuracy as high as 0.07 mm with a standard deviation of 0.80 mm by measuring a 304.8 mm diameter sphere. As a comparison, Kinect V2 only achieved mean error of 0.80 mm with a standard deviation of 3.41 mm for the FOV of measurement.

"High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics," Int. J. Intell. Robot. Applic. (2016)

[90] B. Li, Y. An, D. Cappelleri, J. Xu and S. Zhang, "High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics," Int. J. Intell. Robot. Applic. 1(1), 86–103, (2016).

Abstract

This paper presents some of the high-accuracy and high-speed structured light 3D imaging methods developed in the optical metrology community. These advanced 3D optical imaging technologies could substantially benefit the intelligent robotics community as another sensing tool. This paper mainly focuses on one special 3D imaging technique: digital fringe projection (DFP) method because of its numerous advantageous features comparing to other 3D optical imaging methods in terms of accuracy, resolution, speed, and flexibility. We will discuss technologies that enabled 3D data acquisition, reconstruction, and display at 30 Hz or higher with over 300,000 measurement points per frame. This paper intends to introduce the DFP technologies to the intelligent robotics community, and casts our perspectives on potential applications that such sensing methods could be of value.

Motion induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry, Opt. Express, (2016)

[88] B. Li, Z. Liu and S. Zhang, "Motion induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry," Opt. Express 24(20), 23289-23303 2016; doi: 10.1364/OE.24.023289

We propose a hybrid computational framework to reduce motion induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

"Pixel-wise absolute phase unwrapping using geometric constraints of structured light system," Opt. Express, (2016)

[87] Y. An, J. -S. Hyun, and S. Zhang, "Pixel-wise absolute phase unwrapping using geometric constraints of structured light system", Opt. Express, 24(15), 18445-18459, 2016; doi: 10.1364/OE.24.018445

This paper presents a method to unwrap phase pixel by pixel by solely using geometric constraints of the structured light system without requiring additional image acquisition or  another camera. Specifically, an artificial absolute phase map, Φ_{min},  at a given virtual depth plane z = z_{min}, is created from geometric constraints of the calibrated structured light system; the wrapped phase is pixel-by-pixel unwrapped by referring to Φ_{min}. Since Φ_{min} is defined in the projector space, the unwrapped phase obtained from this method is absolute for each pixel.  Experimental results demonstrate the success of this proposed novel absolute phase unwrapping method.

"A self-recalibration method based on scale-invariant registration for structured light measurement systems," Opt. Laser Eng., (2017)

[92] R. Chen, J. Xu, S. Zhang, H. Chen, Y. Guan, and K. Chen, "A self-recalibration method based on scale-invariaant registration for structured light measurement systems," Opt. Laser Eng., 88, 75-81 (2017); doi:10.1016/j.optlaseng.2016.07.003

Abstract

The measurement accuracy of structured light measurement depends on delicate offline calibration. However, in some practical applications, the system is supposed to be reconfigured so frequently to track the target that an online calibration is required. To this end, this paper proposes a rapid and autonomous self-recalibration method. For the proposed method, first, the rotation matrix and normalized translation vector are attained from the fundamental matrix; second, the scale factor is acquired based on scale-invariant registration such that the actual translation vector is obtained. Experiments have been conducted to verify the effectiveness of our proposed method, and the results indicate a high degree of accuracy.

“Fast registration methodology for fastener assembly of large-scale structure,” IEEE Trans Industrial Electronics (2017)

[86] J. Xu, R. Chen, H. Chen, S. Zhang, and K. Chen, " Fast registration methodology for fastener assembly of large-scale structure," IEEE Trans Industrial Electronics, 64(1),  717-726 (2017); doi:10.1109/TIE.2016.2599140

Abstract

Fastener assembly is a tedious and time-consuming work because operators have to check assembly manuals and find right fastener for each hole. Hence, this article aims to develop a 3D projection system which projects assembly instruction onto the work piece surface directly to guide operators to assemble. However, in order to project the instruction accurately, the corresponding part of the CAD model of the physical scanned area needs to be attained through the rapid and accurate registration. In order to achieve this goal,firstly, a high-accuracy and rapid 3D measurement system is developed; secondly, a fast registration method based on local multi-scale geometric feature vector is proposed to accelerate the registration speed and improve the registration reliability. Experimental results demonstrate the measurement accuracy of the developed system, and verify the feasibility of the proposed registration method. Hence the proposed method can lead to improved assembly efficiency and decreased error probability, making great contributions to large-scale structure assembly.

 

"High-resolution, real-time simultaneous 3D surface geometry and temperature measurement," Opt. Express, (2016);

[85] Y. An and S. Zhang, "High-resolution, real-time simultaneous 3D surface geometry and temperature measurement," Opt. Express, 24(13), 14552-14563, 2016; doi: 10.1364/OE.24.014552

This paper presents a method to simultaneously measure three-dimensional (3D) surface geometry and temperature in real time. Specifically, we developed 1) a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system even though these two sensors do not share the same wavelength; and 2) a computational framework to determine the sub-pixel corresponding temperature for each 3D point as well as discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time: we developed a hardware system that can achieve real-time 3D geometry and temperature measurement at 26 Hz with 768 X 960 points per frame.
 

"Microscopic structured light 3D profilometry: binary defocusing technique VS sinusoidal fringe projection," Opt. Laser Eng., (2016)

[92] B. Li and S. Zhang, "Microscopic structured light 3D profilometry: binary defocusing technique VS sinusoidal fringe projection, " Opt. Laser Eng. 96, 117–123, (2017); doi: 10.1016/j.optlaseng.2016.06.009

Abstract

This paper compares the binary defocusing technique with conventional sinusoidal fringe projection under two different 3D microscopic profilometry systems: 1) both camera and projector use telecentric lenses, and 2) only camera uses a telecentric lens. Our simulation and experiments found that the binary defocusing technique is superior to the traditional sinusoidal fringe projection method by improving the measurement resolution approximately 19%. Finally, by taking the speed advantage of the binary defocusing technique, we presented a high-speed (500 Hz) and high-resolution (1600 X 1200) 3D microscopic profilometry system that could reach kHz.