"Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques," Opt. Laser Eng., (2010)

[21] S. Zhang, "Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques," Opt. Laser Eng., 48, 149-158, 2010 (Invited). (#2 most cited papers in the past five years 2006-2011, 2007-2012, 2008-2013; #1 most downloaded paper October-December, 2009; January-March, 2010; April-June, 2012; July-September, 2012; January - December 2012 Full Year; January-March, 2013; July-September 2013); doi: 10.1016/j.optlaseng.2009.03.008

Over the past few years, we have been developing techniques for high-speed 3D shape measurement using digital fringe projection and phase-shifting techniques: various algorithms have been developed to improve the phase computation speed, parallel programming has been employed to further increase the processing speed, and advanced hardware technologies have been adopted to boost the speed of coordinate calculations and 3D geometry rendering. We have successfully achieved simultaneous 3D absolute shape acquisition, reconstruction, and display at a speed of 30 frames/s with 300 K points per frame. This paper presents the principles of the real-time 3D shape measurement techniques that we developed, summarizes the most recent progresses that have been made in this field, and discusses the challenges for advancing this technology further.