"Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers," Opt. Laser Eng., (2017)

C. Jiang,  B. Li, S. Zhang, "Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers," Opt. Laser Eng., 91, 232-241 (2017);  doi:10.1016/j.optlaseng.2016.12.002

This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed
three-dimensional (3D) absolute shape measurement technique includes the following major steps: 1) segment the measured object into different regions using rough priori knowledge of surface geometry; 2) artificially create phase maps at different z planes using geometric constraints of structured light system; 3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and 4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.